next up previous contents
Next: Example cases Up: ETC output results and Previous: The sky contribution

 
The FWHM of the Image Quality profile

If we suppose the seeing has a gaussian profile:


\begin{displaymath}I(x)=\exp(-\frac{x^{2}}{\sigma^{2}})
\end{displaymath}


\begin{displaymath}\int I(x) dx=\sqrt{\pi}\sigma
\end{displaymath}


\begin{displaymath}FWHM=1.665\sigma=2\sqrt{\ln(2)}\sigma
\end{displaymath}


\begin{displaymath}erf(x)=\frac{2}{\sqrt{\pi}}\int_{0}^{x}\exp(-t^{2}) dt=\frac{...
...rac{x^{2}}{1!3}+\frac{x^{4}}{2!5}-\frac{x^{6}}{3!7}+...\right)
\end{displaymath}

Where we have taken in count that


\begin{displaymath}erf(\infty)=1.0
\end{displaymath}

defining:


\begin{displaymath}J(x)=\exp(-\frac{x^{2}}{2\sigma^{2}})
\end{displaymath}

In this case we have:


\begin{displaymath}FWHM=2.35482\sigma
\end{displaymath}


\begin{displaymath}\int J(x) dx=\sqrt{2\pi}\sigma
\end{displaymath}


\begin{displaymath}G(x)=\frac{1}{\sqrt{\pi}\sigma}\exp(-\frac{x^{2}}{2\sigma^2})
\end{displaymath}


\begin{displaymath}\int G(x)=1
\end{displaymath}

For example, for a gaussian which has a maximum value of I0=141.55 and a FWHM of 840 Å. The integral is:


\begin{displaymath}I=141.55\times\frac{840}{1.665}\sqrt{\pi}=126575.56
\end{displaymath} (2.8)

or


\begin{displaymath}I=141.55\times\frac{840}{2.355}\sqrt{2\pi}
\end{displaymath} (2.9)


\begin{displaymath}I_{tot}=I_{max}\cdot FWHM\cdot 1.0645
\end{displaymath} (2.10)

So the FWHM of the spatial profile can be calculated if one knows:


next up previous contents
Next: Example cases Up: ETC output results and Previous: The sky contribution
Pascal Ballester
1999-07-29